ПРИКЛАДНОЕ МАТЕРИАЛОВЕДЕНИЕ ДЛЯ ОРТОПЕДИЧЕСКОЙ СТОМАТОЛОГИИ

 

 

ГЛАВНАЯ

1. Классификация материалов, применяемых в ортопедической стоматологии

2. Оттискные материалы

3. Металлы и их сплавы

4. Стоматологический фарфор. Ситаллы

5. Полимеры

6. Композиционные материалы (компомеры)

7. Цементы

8. Моделировочные материалы

9.Формовочные материалы

10. Материалы для химической обработки сплавов металлов и соединения металлических деталей протезов

11. Материалы для отделки стоматологических изделий (абразивные материалы)

12. Изоляционные и покрывные материалы

13. Расходные средства и материалы на клиническом приеме

14. Взаимодействие основных стоматологических материалов с организмом человека (клиническое материаловедение)

Справочные таблицы

Список сокращений

КАРТА САЙТА

 

    Глава 5. Полимеры


5.2.2. Технология пластмассового базиса протеза

                            страницы 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16


Экспериментально-клинические исследования по использованию в качестве внешнего источника тепловой энергии ультразвукового воздействия на полимер-мономерную композицию базисной пластмассы не выявили существенного улучшения физико-механических показателей прочности базиса [Мишнёв Л. М„ 1987].

В литературе отмечалось, что проведение процесса полимеризации акриловых базисных материалов в сухожаровом шкафу вместо традиционной водяной бани позволяет получить более однородный материал без пористости и шероховатости поверхности.

Результаты исследований В. И. Тищенко (1976) показали, что при полимеризации в сухой среде общее число пор в шлифах базисов протезов, полученных методом компрессионного прессования, в 6 раз меньше, а у поверхности, прилегающей к слизистой оболочке, в 11 раз меньше по сравнению с образцами, полимеризация которых проводилась в кипящей воде (на водяной бане). В то же время изучение прочности на разрыв и изгиб образцов пластмассы АКР-15, полученных при полимеризации в сухой среде, определило, что прочность на разрыв увеличивается на 65%, при статическом изгибе — на 12%.

Наиболее успешным применение суховоздушной полимеризации оказалось при производстве мостовидных металлопластмассовых зубных протезов (см. гл. 5.6), а также ортодонтических аппаратов непосредственно на моделях челюстей.  

Рекомендуется: